Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38597179

RESUMO

STUDY DESIGN: A systematic review and meta-analysis. OBJECTIVE: This study aimed to evaluate the clinical efficacy of minimally invasive surgery (MIS) and open surgery in correcting ADS. SUMMARY OF BACKGROUND DATA: Adult degenerative scoliosis (ADS) is a scoliosis secondary to degenerative changes in the intervertebral discs and facet joints in adults. Severe low back pain, radicular pain, and intermittent claudication are often present and require surgical treatment. METHODS: PubMed, EMbase, The Cochrane Library, China national knowledge infrastructure (CNKI) Database, Wanfang Data, Weipu Database, and China Biomedical Document Service System (CBM) were systematically searched for studies that focused on the clinical efficacy of minimally invasive surgery and open surgery to correct ADS. RESULTS: This meta-analysis included 11 studies, involving 1527 patients (581 in the MIS group and 946 in the open surgery group). Regarding surgery and outcome indicators, the operative time in the open surgery group was shorter, the MIS group had less intraoperative blood loss, shorter hospitalization time, and lower incidence of serious postoperative complications. In terms of imaging parameters, although there was no significant difference in Cobb angle improvement and sagittal balance, the open surgery group exhibited better lumbar lordosis improvement and pelvic tilt improvement. In terms of clinical scores, including changes in the ODI index and VAS scores for low back and leg pain, similar improvements were appreciated across both groups. CONCLUSIONS: In mild to moderate ADS, we found that the advantages of open surgery include greater improvement in lumbar lordosis and pelvic tilt angle and shorter operative time. The advantages of minimally invasive surgery are less intraoperative blood loss, shorter hospital stay, and fewer serious postoperative complications. There is no significant difference between the two surgical methods in terms of Cobb angle, clinical pain and SVA improvement.

2.
Front Immunol ; 15: 1335366, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464516

RESUMO

Bone is a common organ for solid tumor metastasis. Malignant bone tumor becomes insensitive to systemic therapy after colonization, followed by poor prognosis and high relapse rate. Immune and bone cells in situ constitute a unique immune microenvironment, which plays a crucial role in the context of bone metastasis. This review firstly focuses on lymphatic cells in bone metastatic cancer, including their function in tumor dissemination, invasion, growth and possible cytotoxicity-induced eradication. Subsequently, we examine myeloid cells, namely macrophages, myeloid-derived suppressor cells, dendritic cells, and megakaryocytes, evaluating their interaction with cytotoxic T lymphocytes and contribution to bone metastasis. As important components of skeletal tissue, osteoclasts and osteoblasts derived from bone marrow stromal cells, engaging in 'vicious cycle' accelerate osteolytic bone metastasis. We also explain the concept tumor dormancy and investigate underlying role of immune microenvironment on it. Additionally, a thorough review of emerging treatments for bone metastatic malignancy in clinical research, especially immunotherapy, is presented, indicating current challenges and opportunities in research and development of bone metastasis therapies.


Assuntos
Neoplasias Ósseas , Microambiente Tumoral , Humanos , Recidiva Local de Neoplasia , Osso e Ossos/patologia , Neoplasias Ósseas/patologia , Macrófagos
3.
BMC Genomics ; 24(1): 522, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667193

RESUMO

BACKGROUND: Evident adolescent idiopathic scoliosis (AIS) incurs high treatment costs, low quality of life, and many complications. Early screening of AIS is essential to avoid progressing to an evident stage. However, there is no valid serum biomarker for AIS for early screening. METHODS: Antibody-based array is a large-scale study of proteins, which is expected to reveal a serum protein signature as biomarker for AIS. There are two segments of the research, including biomarkers screening and validation. In the biomarkers screening group, a total of 16 volunteers participated in this study, and we carried out differentially expressed proteins screening via protein array assay between No-AIS group and the AIS group, through which GeneSet enrichment analysis was performed. In the validation group with a total of 62 volunteers, the differentially expressed proteins from screening group were verified by Enzyme-Linked immunosorbent assay (ELISA), and then multiple regression analysis. RESULTS: In our study, there were twenty-nine differentially expressed proteins in AIS, through Protein array assay and GeneSet enrichment analysis in the biomarkers screening group. Then the expression of FAP, CD23 and B2M decreased as the degree of AIS increased via ELISA in validation group (FAP, p < 0.0001; CD23, p = 0.0002; B2M, p < 0.0001). Further, the results of multiple regression analysis showed that FAP, CD23 are linked to Cobb angle, whereas B2M were excluded because of multicollinearity. CONCLUSIONS: Altogether, we found that serum protein FAP and CD23 are intimately related to AIS, suggesting FAP and CD23 are expected to serve as the serum biomarkers, which significantly facilitate frequent longitudinal monitoring as to keep track of disease progression and tailor treatment accordingly.


Assuntos
Qualidade de Vida , Escoliose , Humanos , Adolescente , Escoliose/diagnóstico , Anticorpos , Proteínas Sanguíneas , Biomarcadores
4.
Adv Mater ; 35(51): e2304296, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37587307

RESUMO

Tumor-associated macrophage (TAM) reprogramming is a promising therapeutic approach for cancer immunotherapy; however, its efficacy remains modest due to the low bioactivity of the recombinant cytokines used for TAM reprogramming. mRNA therapeutics are capable of generating fully functional proteins for various therapeutic purposes but accused for its poor sustainability. Inspired by kinetic energy recovery systems (KERS) in hybrid vehicles, a cytokine efficacy recovery system (CERS) is designed to substantially augment the therapeutic index of mRNA-based tumor immunotherapy via a "capture and stabilize" mechanism exerted by a nanostructured mineral coating carrying therapeutic cytokine mRNA. CERS remarkably recycles nearly 40% expressed cytokines by capturing them onto the mineral coating to extend its therapeutic timeframe, further polarizing the macrophages to strengthen their tumoricidal activity and activate adaptive immunity against tumors. Notably, interferon-γ (IFN-γ) produced by CERS exhibits ≈42-fold higher biological activity than recombinant IFN-γ, remarkably decreasing the required IFN-γ dosage for TAM reprogramming. In tumor-bearing mice, IFN-γ cmRNA@CERS effectively polarizes TAMs to inhibit osteosarcoma progression. When combined with the PD-L1 monoclonal antibody, IFN-γ cmRNA@CERS significantly boosts antitumor immune responses, and substantially prevents malignant lung metastases. Thus, CERS-mediated mRNA delivery represents a promising strategy to boost antitumor immunity for tumor treatment.


Assuntos
Técnicas de Reprogramação Celular , Citocinas , Interferon gama , Neoplasias , Macrófagos Associados a Tumor , Animais , Camundongos , Imunoterapia , Interferon gama/genética , Interferon gama/metabolismo , Proteínas Recombinantes , RNA Mensageiro/genética , Reprogramação Celular , Neoplasias/terapia
5.
Adv Mater ; : e2304774, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37523329

RESUMO

Deep tissue infection is a common clinical issue and therapeutic difficulty caused by the disruption of the host antibacterial immune function, resulting in treatment failure and infection relapse. Intracellular pathogens are refractory to elimination and can manipulate host cell biology even after appropriate treatment, resulting in a locoregional immunosuppressive state that leads to an inadequate response to conventional anti-infective therapies. Here, a novel antibacterial strategy involving autogenous immunity using a biomimetic nanoparticle (NP)-based regulating system is reported to induce in situ collaborative innate-adaptive immune responses. It is observed that a macrophage membrane coating facilitates NP enrichment at the infection site, followed by active NP accumulation in macrophages in a mannose-dependent manner. These NP-armed macrophages exhibit considerably improved innate capabilities, including more efficient intracellular ROS generation and pro-inflammatory factor secretion, M1 phenotype promotion, and effective eradication of invasive bacteria. Furthermore, the reprogrammed macrophages direct T cell activation at infectious sites, resulting in a robust adaptive antimicrobial immune response to ultimately achieve bacterial clearance and prevent infection relapse. Overall, these results provide a conceptual framework for a novel macrophage-based strategy for infection treatment via the regulation of autogenous immunity.

6.
Research (Wash D C) ; 6: 0086, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223474

RESUMO

Platelet-derived growth factor-BB (PDGF-BB)/platelet-derived growth factor receptor-ß (PDGFR-ß) pathway is conventionally considered as an important pathway to promote osteogenesis; however, recent study suggested its role during osteogenesis to be controversial. Regarding the differential functions of this pathway during 3 stages of bone healing, we hypothesized that temporal inhibition of PDGF-BB/PDGFR-ß pathway could shift the proliferation/differentiation balance of skeletal stem and progenitor cells, toward osteogenic lineage, which leads to improved bone regeneration. We first validated that inhibition of PDGFR-ß at late stage of osteogenic induction effectively enhanced differentiation toward osteoblasts. This effect was also replicated in vivo by showing accelerated bone formation when block PDGFR-ß pathway at late stage of critical bone defect healing mediated using biomaterials. Further, we found that such PDGFR-ß inhibitor-initiated bone healing was also effective in the absence of scaffold implantation when administrated intraperitoneally. Mechanistically, timely inhibition of PDGFR-ß blocked extracellular regulated protein kinase 1/2 pathway, which shift proliferation/differentiation balance of skeletal stem and progenitor cell to osteogenic lineage by upregulating osteogenesis-related products of Smad to induce osteogenesis. This study offered updated understanding of the use of PDGFR-ß pathway and provides new insight routes of action and novel therapeutic methods in the field of bone repair.

7.
Adv Sci (Weinh) ; 10(10): e2206155, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36725311

RESUMO

The upstream role of sensory innervation during bone homeostasis is widely underestimated in bone repairing strategies. Herein, a neuromodulation approach is proposed to orchestrate bone defect healing by constructing engineered sensory nerves (eSN) in situ to leverage the adaptation feature of SN during tissue formation. NGF liberated from ECM-constructed eSN effectively promotes sensory neuron differentiation and enhances CGRP secretion, which lead to improved RAOECs mobility and osteogenic differentiation of BMSC. In turn, such eSN effectively drives ossification in vivo via NGF-TrkA signaling pathway, which substantially accelerates critical size bone defect healing. More importantly, eSN also adaptively suppresses excessive bone formation and promotes bone remodeling by activating osteoclasts via CGRP-dependent mechanism when combined with BMP-2 delivery, which ingeniously alleviates side effects of BMP-2. In sum, this eSN approach offers a valuable avenue to harness the adaptive role of neural system to optimize bone homeostasis under various clinical scenario.


Assuntos
Osteogênese , Receptor trkA , Receptor trkA/metabolismo , Osteogênese/fisiologia , Peptídeo Relacionado com Gene de Calcitonina , Fator de Crescimento Neural/metabolismo , Transdução de Sinais
8.
Phytomedicine ; 98: 153928, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35104760

RESUMO

BACKGROUND: Osteoarthritis (OA) is a globally prevalent degenerative disease characterized by extracellular matrix (ECM) degradation and inflammation. Tangeretin is a natural flavonoid that has anti-inflammatory properties. Studies have not explored whether tangeretin modulates OA development. PURPOSE: The aim of this study was to explore the potential effects and mechanism underlying the anti-OA properties of tangeretin. STUDY DESIGN: Effects of tangeretin on OA were detected in chondrocytes and OA mouse model. METHODS: Protective effects of tangeretin on murine articular chondrocytes treated with interleukin-1ß (IL-1ß) were evaluated using qPCR, western blot analysis, ELISA, ROS detection and immunofluorescent staining in vitro. Healing effect of tangeretin on cartilage degradation in mice was assessed through X-ray imaging, histopathological analysis, immunohistochemical staining and immunofluorescent staining in vivo. RESULTS: Tangeretin suppressed IL-1ß-mediated inflammatory mediator secretion and degradation of ECM in chondrocytes. The results showed that tangeretin abrogated destabilized medial meniscus (DMM)-induced cartilage degradation in mice. Mechanistic studies showed that tangeretin suppressed OA development by downregulating activation of NF-κB by activating Nrf2/HO-1 axis and suppressing MAPK signaling pathway. CONCLUSION: Tangeretin abrogates OA progression by inhibiting inflammation as well as ECM degradation in chondrocytes and animal models. Effects of tangeretin are mediated through Nrf2/NF-κB and the MAPK/NF-κB pathways. Thus, tangeretin is a potential therapeutic agent for osteoarthritis treatment.

9.
Cell Death Dis ; 13(2): 140, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145070

RESUMO

The pathophysiology of spinal cord injury (SCI) involves primary injury and secondary injury. Secondary injury is a major target for SCI therapy, whereas microglia play an important role in secondary injury. The immunoresponsive gene 1 (Irg-1) has been recorded as one of the most significantly upregulated genes in SCI tissues in gene chip data; however, its role in SCI remains unclear. This study aims to illustrate the role of Irg-1 as well as its regulated metabolite itaconate in SCI. It was demonstrated that the expression of Irg-1 was increased in spinal cord tissues in mice as well as in microglia stimulated by lipopolysaccharides (LPS). It was also shown that overexpression of Irg-1 may suppress LPS-induced inflammation in microglia, while these protective effects were attenuated by Nrf2 silencing. In vivo, overexpression of Irg-1 was shown to suppress neuroinflammation and improve motor function recovery. Furthermore, treatment of microglia with itaconate demonstrated similar inflammation suppressive effects as Irg-1 overexpression in vitro and improved motor function recovery in vivo. In conclusion, the current study shows that Irg-1 and itaconate are involved in the recovery process of SCI, either Irg-1 overexpression or itaconate treatment may provide a promising strategy for the treatment of SCI.


Assuntos
Hidroliases , Microglia , Traumatismos da Medula Espinal , Animais , Hidroliases/genética , Hidroliases/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos , Camundongos , Microglia/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/genética , Succinatos
10.
Orthop Surg ; 14(2): 443-450, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34914198

RESUMO

This study sought to investigate and evaluate a modified axial translaminar screw fixation for treating odontoid fractures. We performed a retrospective study at Wenzhou Medical University Affiliated Second Hospital between March 2016 and June 2018. We retrospectively collected and analyzed the medical records of 23 cases with odontoid fractures. All patients were identified as type II odontoid fractures without neurological deficiency and serious diseases following the classification of Anderson. The average age, gender ratio, and body mass index (BMI) were 54.3 ± 11.1 years, 12 men to 11 women, and 22.6 ± 2.4 kg/m2 , respectively. Patients in this study accepted screw fixation using our modified axial translaminar screw fixation combined with atlas pedicle or lateral mass screw fixation. Within the technique, a small cortical "window" was dug in the middle of the axial contralateral lamina, such that the screws in the lamina were visualized to prevent incorrectly implanting the posterior spinal canal through the visualized "window." A total of 46 bone screws were accurately inserted into the axial lamina without using fluoroscopy. The length of all translaminar screws ranged between 26 and 30 mm, while the diameter was 3.5 mm. During the follow-up survey, the visual analog scale (VAS) and neck disability index (NDI) were measured. We provide a simple modification of Wright's elegant technique with the addition of "visualized windows" at the middle of the axial lamina. In all patients, screws were inserted accurately without bony breach and the screw angle was 56.1 ± 3.0°. Mean operative time was 102 ± 28 min with an average blood loss of 50 ± 25 mL. Postoperative hemoglobin and mean length of hospital stay were 12.0 ± 1.4 g/dL and 10.4 ± 3.4 days, respectively. The average follow-up time of all cases was 14.7 months and no internal fixation displacement, loosening, or breakage was found. All patients with odontoid fractures reported being satisfied with the treatment during the recheck period and good clinical outcomes were observed. At 1, 6, and 12 months, NDI and VAS showed that the symptoms of neck pain and limitations of functional disability improved significantly during follow-up. Our results suggest that the modified translaminar screw fixation technique can efficiently treat Anderson type II odontoid fracture, followed by the benefits of less soft tissue dissection, simple operation, no fluoroscopy, and accurate placement of screws.


Assuntos
Processo Odontoide , Fraturas da Coluna Vertebral , Fusão Vertebral , Adulto , Idoso , Parafusos Ósseos , Feminino , Fixação Interna de Fraturas/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Processo Odontoide/diagnóstico por imagem , Processo Odontoide/lesões , Processo Odontoide/cirurgia , Estudos Retrospectivos , Fraturas da Coluna Vertebral/diagnóstico por imagem , Fraturas da Coluna Vertebral/cirurgia , Fusão Vertebral/métodos , Resultado do Tratamento
12.
Cell Death Dis ; 12(6): 506, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006821

RESUMO

Diabetes (DB) is a risk factor for osteoarthritis progression. High glucose (HG) is one of the key pathological features of DB and has been demonstrated to induce apoptosis and senescence in chondrocytes. Autophagy is an endogenous mechanism that can protect cells against apoptosis and senescence. The effects of HG on autophagy in cells including chondrocytes have been studied; however, the results have been inconsistent. The current study aimed to elucidate the underlying mechanisms, which could be associated with the contrasting outcomes. The present study revealed that HG can induce apoptosis and senescence in chondrocytes, in addition to regulating autophagy dynamically. The present study demonstrated that HG can cause oxidative stress in chondrocytes and suppress the AMPK pathway in a dose-dependent manner. Elimination of oxidative stress by Acetylcysteine, also called N-acetyl cysteine (NAC), downregulated autophagy and alleviated HG-stimulated apoptosis and senescence, while activation of the AMPK signaling pathway by AICAR not only upregulated autophagy but also alleviated HG-stimulated apoptosis and senescence. A combined treatment of NAC and AICAR was superior to treatment with either NAC or AICAR. The study has demonstrated that HG can suppress autophagy through the AMPK pathway and induce autophagy via oxidative stress in chondrocytes.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Acetilcisteína/uso terapêutico , Aminoimidazol Carboxamida/análogos & derivados , Autofagia/fisiologia , Condrócitos/metabolismo , Complicações do Diabetes/complicações , Diabetes Mellitus/tratamento farmacológico , Glucose/metabolismo , Hiperglicemia/complicações , Estresse Oxidativo/fisiologia , Ribonucleotídeos/uso terapêutico , Acetilcisteína/farmacologia , Aminoimidazol Carboxamida/farmacologia , Aminoimidazol Carboxamida/uso terapêutico , Animais , Humanos , Camundongos , Ribonucleotídeos/farmacologia
13.
Food Funct ; 12(6): 2703-2714, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33666626

RESUMO

Intervertebral disc degeneration (IVDD) is one of the major causes of low back pain, but effective therapies are still lacking because of its complicated pathology. It has been demonstrated that increased levels of interleukin-1ß (IL-1ß) may promote the development of IVDD. Cardamonin (CAR) is a chalcone extracted from Alpinia katsumadai and other plants. It exhibits an anti-inflammatory effect in multiple diseases. In the present study, we investigated the protective effects of CAR on rat nucleus pulposus (NP) cells under IL-1ß stimulation in vitro and in a puncture-induced rat IVDD model in vivo. We explored the CAR treatment's inhibition of the expression of inflammatory factors such as cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), prostaglandin E2 (PGE2), nitric oxide (NO), tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) in rat NP cells. Moreover, the up-regulation of matrix metalloproteinase-13 (MMP-13) and thrombospondin motifs 5 (ADAMTS-5) and the degradation of aggrecan and collagen II induced by IL-1ß were reversed by CAR. Mechanistically, we demonstrated that CAR inhibited nuclear factor kappa B (NF-κB) signaling by activating the nuclear factor erythroid-derived 2-like 2 (Nrf2) in IL-1ß-induced rat NP cells. Furthermore, the protective effect of CAR was shown in the IVDD model through persistent intragastric administration. Taken together, our results revealed that CAR could activate the Nrf2/HO-1 signaling axis and be a novel agent for IVDD therapy.


Assuntos
Chalconas/farmacologia , Interleucina-1beta/metabolismo , Núcleo Pulposo/citologia , Transdução de Sinais/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Inflamação/metabolismo , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Ratos , Ratos Sprague-Dawley
14.
Osteoarthritis Cartilage ; 29(4): 579-591, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33434630

RESUMO

OBJECTIVE: To elucidate the role of LRRK2 in intervertebral disc degeneration (IDD) as well as its mitophagy regulation mechanism. METHODS: The expression of LRRK2 in human degenerative nucleus pulposus tissues as well as in oxidative stress-induced rat nucleus pulposus cells (NPCs) was detected by western blot. LRRK2 was knocked down in NPCs by lentivirus (LV)-shLRRK2 transfection; apoptosis and mitophagy were assessed by western blot, TUNEL assay, immunofluorescence staining and mitophagy detection assay in LRRK2-deficient NPCs under oxidative stress. After knockdown of Parkin in NPCs with siRNA transfection, apoptosis and mitophagy were further assessed. In puncture-induced rat IDD model, X-ray, MRI, hematoxylin-eosin (HE) and Safranin O-Fast green (SO) staining were performed to evaluate the therapeutic effects of LV-shLRRK2 on IDD. RESULTS: We found that the expression of LRRK2 was increased in degenerative NPCs both in vivo and in vitro. LRRK2 deficiency significantly suppressed oxidative stress-induced mitochondria-dependent apoptosis in NPCs; meanwhile, mitophagy was promoted. However, these effects were abolished by the mitophagy inhibitor, suggesting the effect of LRRK2 on apoptosis in NPCs is mitophagy-dependent. Furthermore, Parkin knockdown study showed that LRRK2 deficiency activated mitophagy by recruiting Parkin. In vivo study demonstrated that LRRK2 inhibition ameliorated IDD in rats. CONCLUSIONS: The results revealed that LRRK2 is involved in the pathogenesis of IDD, while knockdown of LRRK2 inhibits oxidative stress-induced apoptosis through mitophagy. Thus, inhibition of LRRK2 may be a promising therapeutic strategy for IDD.


Assuntos
Apoptose/genética , Degeneração do Disco Intervertebral/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mitofagia/genética , Núcleo Pulposo/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adulto , Idoso , Animais , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Humanos , Degeneração do Disco Intervertebral/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Masculino , Pessoa de Meia-Idade , Núcleo Pulposo/citologia , Estresse Oxidativo/genética , Ratos
15.
J Cell Physiol ; 236(6): 4369-4386, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33164235

RESUMO

The inflammatory environment and excessive chondrocyte apoptosis have been demonstrated to play crucial roles in the onset of osteoarthritis (OA). Hydrogen sulfide (H2 S), a gaseous signalling molecule, exerts an inhibitory effect on inflammation and apoptosis in several degenerative diseases. However, the protective effect of H2 S against OA has not been fully clarified, and its underlying mechanism should be examined further. In the current study, the role of endogenous H2 S in the pathogenesis of OA and its protective effects on interleukin (IL)-1ß-induced chondrocytes were identified. Our data revealed decreased H2 S expression in both human degenerative OA cartilage tissue and IL-1ß-induced chondrocytes. Pretreatment with the H2 S donor sodium hydrosulfide (NaHS) dramatically attenuated IL-1ß-induced overproduction of inflammatory cytokines and improved the balance between anabolic and catabolic chondrocyte capacities, and these effects were dependent on PI3K/AKT pathway-mediated inhibition of nuclear factor kappa B (NF-κB). Moreover, mitochondrial dysfunction-related apoptosis was significantly reversed by NaHS in IL-1ß-stimulated chondrocytes. Mechanistically, NaHS partially suppressed IL-1ß-induced phosphorylation of the mitogen-activated protein kinase (MAPK) cascades. Furthermore, in the destabilization of the medial meniscus mouse model, OA progression was ameliorated by NaHS administration. Taken together, these results suggest that H2 S may antagonize IL-1ß-induced inflammation and mitochondrial dysfunction-related apoptosis via selective suppression of the PI3K/Akt/NF-κB and MAPK signalling pathways, respectively, in chondrocytes and may be a potential therapeutic agent for the treatment of OA.


Assuntos
Antirreumáticos/farmacologia , Apoptose/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Mediadores da Inflamação/metabolismo , Interleucina-1beta/toxicidade , Articulações/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Osteoartrite/tratamento farmacológico , Sulfetos/farmacologia , Idoso , Animais , Antirreumáticos/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Condrócitos/imunologia , Condrócitos/metabolismo , Condrócitos/patologia , Modelos Animais de Doenças , Feminino , Humanos , Sulfeto de Hidrogênio/metabolismo , Articulações/imunologia , Articulações/metabolismo , Articulações/patologia , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Osteoartrite/imunologia , Osteoartrite/metabolismo , Osteoartrite/patologia , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Sulfetos/metabolismo
16.
Cell Prolif ; 54(2): e12975, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33372336

RESUMO

OBJECTIVES: Diabetes is a risk factor for intervertebral disc degeneration (IVDD). Studies have demonstrated that diabetes may affect IVDD through transcriptional regulation; however, whether post-transcriptional regulation is involved in diabetic IVDD (DB-IVDD) is still unknown. This study was performed to illustrate the role of HuR, an RNA-binding protein, in DB-IVDD development and its mechanism. MATERIALS AND METHODS: The expression of HuR was evaluated in nucleus pulposus (NP) tissues from diabetic IVDD patients and in high glucose-treated NP cells. Senescence and autophagy were assessed in HuR over-expressing and downregulation NP cells. The mRNAs that were regulated by HuR were screened, and immunoprecipitation was applied to confirm the regulation of HuR on targeted mRNAs. RESULTS: The results showed that the expression of HuR was decreased in diabetic NP tissues and high glucose-treated NP cells. Downregulation of HuR may lead to increased senescence in high glucose-treated NP cells, while autophagy activation attenuates senescence in HuR deficient NP cells. Mechanistic study showed that HuR prompted Atg7 mRNA stability via binding to the AU-rich elements. Furthermore, overexpression of Atg7, but not HuR, may ameliorate DB-IVDD in rats in vivo. CONCLUSIONS: In conclusion, HuR may suppress senescence through autophagy activation via stabilizing Atg7 in diabetic NP cells; while Atg7, but not HuR, may serve as a potential therapeutic target for DB-IVDD.


Assuntos
Proteína 7 Relacionada à Autofagia/metabolismo , Autofagia , Senescência Celular , Proteína Semelhante a ELAV 1/metabolismo , Degeneração do Disco Intervertebral/patologia , Regiões 3' não Traduzidas , Animais , Autofagia/efeitos dos fármacos , Proteína 7 Relacionada à Autofagia/genética , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Proteína Semelhante a ELAV 1/antagonistas & inibidores , Proteína Semelhante a ELAV 1/genética , Glucose/farmacologia , Humanos , Degeneração do Disco Intervertebral/etiologia , Degeneração do Disco Intervertebral/metabolismo , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Núcleo Pulposo/citologia , Núcleo Pulposo/metabolismo , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína Sequestossoma-1/metabolismo
17.
J Orthop Sci ; 26(4): 636-643, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32798112

RESUMO

BACKGROUND: Percutaneous reduction, cannulated screw fixation and calcium sulfate cement grafting (PR + CSC) for treatment of displaced and intra-articular calcaneal fractures (DIACFs) is a difficult technique, because the minimally invasive treatment has limited exposure and cannot be used to reduce articular surface under direct vision. The goal of this study was to apply 3D printing technology to preoperative planning and surgery of DIACFs, and to evaluate its effectiveness, feasibility and safety in fracture repair. METHODS: We enrolled 81 patients with DIACFs in the study from August 2015 to August 2017. Patients with DIACFs in our hospital were randomly divided into the 3D printing group (40 cases) and the conventional group (41 cases). The operation duration, blood loss volume and the number of fluoroscopy were compared. Radiological results were evaluated using radiographs and functional results were evaluated using the American Orthopedic Foot and Ankle Society (AOFAS) score. The complications were also assessed. In addition, we made a questionnaire to verify the usefulness of the 3D printed model for both doctors and patients. RESULTS: The operation duration, blood loss volume and the number of fluoroscopy in 3D printing group were significantly less than that in the conventional group. Besides, 3D printing group achieved significantly better radiological results than conventional group both postoperatively and at the final follow-up except the calcaneal width at the final follow-up. The AOFAS score in the 3D printing group was significantly higher than that in the conventional group. In addition, the questionnaire from doctors and patients exhibited high scores of overall satisfaction of the 3D printed models. As for complications, there was no significant difference among the two groups. CONCLUSION: This study suggested the clinical feasibility of PR + CSC assisted by 3D printing technology in the treatment of DIACFs. LEVEL OF EVIDENCE: II.


Assuntos
Calcâneo , Fraturas Ósseas , Fraturas Intra-Articulares , Parafusos Ósseos , Calcâneo/diagnóstico por imagem , Calcâneo/cirurgia , Sulfato de Cálcio , Fixação Interna de Fraturas , Fraturas Ósseas/diagnóstico por imagem , Fraturas Ósseas/cirurgia , Humanos , Fraturas Intra-Articulares/diagnóstico por imagem , Fraturas Intra-Articulares/cirurgia , Impressão Tridimensional , Resultado do Tratamento
18.
Front Cell Dev Biol ; 8: 611234, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330514

RESUMO

Intervertebral disc degeneration (IVDD) has been reported to be a major cause of low back pain. Studies have demonstrated that IVDD may be dysregulated at the transcriptional level; however, whether post-transcriptional regulation is involved is still unknown. The current study aimed to illustrate the role of Human antigen R (HuR), an RNA binding protein involved in post-transcriptional regulation, in IVDD. The results showed that the expression of HuR was decreased in degenerative nucleus pulposus (NP) tissues as well as in TNF-α-treated NP cells. Downregulation of HuR may lead to increased inflammation and extracellular matrix (ECM) degradation in TNF-α-treated NP cells; however, these effects were not reversed in HuR overexpressed NP cells. Inhibition of the NF-κB signaling pathway attenuates inflammation and ECM degradation in HuR-deficient NP cells. A mechanism study showed that HuR prompted NKRF mRNA stability via binding to its AU-rich elements, and upregulation of NKRF suppressed inflammation and ECM degradation in HuR-deficient NP cells. Furthermore, we found that NKRF, but not HuR, overexpression ameliorated the process of IVDD in rats in vivo. In conclusion, HuR suppressed inflammation and ECM degradation in NP cells via stabilizing NKRF and inhibiting the NF-κB signaling pathway; NKRF, but not HuR, may serve as a potential therapeutic target for IVDD.

19.
Food Funct ; 11(12): 10864-10875, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33245081

RESUMO

Intervertebral disc degeneration (IDD) has been reported to be a major cause of low back pain. Stachydrine (STA) is present in the fruit juice of the Citrus genus and Leonurus heterophyllus, in non-negligible concentrations. In our study, we examined the protective effects of STA against IDD development as well as its underlying mechanism of action using both in vitro and in vivo experiments. STA exerted protective effects on the anabolism and catabolism of the extracellular matrix (ECM) in IL-1ß-treated NPCs and inhibited the expression of pro-inflammatory factors in vitro. Mechanistically, STA suppressed the IL-1ß-induced activation of PI3K/Akt/NF-κB signalling pathway cascades. Moreover, it was also demonstrated in molecular docking studies that STA has strong binding abilities to PI3K. Furthermore, STA ameliorated the progression of the IDD process in vivo in the puncture-induced rat model. In summary, our findings demonstrated that STA ameliorates the progression of IDD via the PI3K/Akt/NF-κB signalling pathway, which makes STA a promising therapeutic agent for the treatment of IDD.


Assuntos
Degeneração do Disco Intervertebral/tratamento farmacológico , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Prolina/análogos & derivados , Prolina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Progressão da Doença , Matriz Extracelular/metabolismo , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Masculino , Simulação de Acoplamento Molecular , Prolina/química , Ratos , Ratos Sprague-Dawley
20.
Int Immunopharmacol ; 89(Pt B): 107079, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33096361

RESUMO

Osteoarthritis (OA) is a progressive and degenerative joint disease. Aloin is a bitter and yellow-brown-coloured compound from the Aloe plant and is allowed for use in foods as a "natural flavour". In our study, we examined the protective effects of Aloin on the inhibition of OA development as well as its underlying mechanism in both in vitro and vivo experiments. In in-vitro experiments, the protective effect of aloin on the anabolism and catabolism of the extracellular matrix (ECM) induced by IL-1 ß in chondrocytes by inhibiting the expression of pro-inflammatory factors, including TNF-α (p = 0.016), IL-6 (p = 0.006), iNOS (p = 0.001) and COX-2 (p = 0.006). Mechanistically, Aloin suppressed the IL-1ß-induced activation of the PI3K/Akt/NF-κB signalling pathway cascades. Moreover, molecular docking studies demonstrated that Aloin bound strongly to PI3K. In vivo, Aloin ameliorated the OA process in the destabilization of the medial meniscus (DMM) model. In summary, our findings demonstrate that Aloin ameliorates the progression of OA via the PI3K/Akt/NF-κB signalling pathways, which supports Aloin as a promising therapeutic agent for the treatment of OA.


Assuntos
Anti-Inflamatórios/farmacologia , Condrócitos/efeitos dos fármacos , Emodina/análogos & derivados , Articulações/efeitos dos fármacos , NF-kappa B/metabolismo , Osteoartrite/prevenção & controle , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Células Cultivadas , Condrócitos/enzimologia , Condrócitos/patologia , Modelos Animais de Doenças , Emodina/farmacologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Interleucina-1beta/farmacologia , Articulações/enzimologia , Articulações/patologia , Masculino , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Osteoartrite/enzimologia , Osteoartrite/patologia , Fosforilação , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...